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Introduction

Several detector and instrumentation challenges can be cast
into a pattern recognition, regression or classification task.

Deep learning has made tremendous progress in the recent
decades, thanks to new technique, computation acceleration,
but also more data, and more driving applications (social media
data, robotics, ...).

We will look at several ways to cast detector problems into
deep learning and other technique.

Accelerating technologies are enabling deep learning. The field
of cognitive computing and brain inspired hardware is emerging
and promising for going beyond moore's law limitations.

Potential for bringing more elaborated computation closer to the
detector in the data processing pipeline (readout, trigger, ...)
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Outline

●Deep Learning Achievements
●The Enthusiastic Industry
●Pattern Detection/Recognition
●Accelerating Technology 
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Advanced Machine Learning
and Deep Learning

(my selection)
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Machine Learning in a Nutshell

Balazs Kegl, CERN 2014



10/09/16 CPAD 2016, Brain Inspired Technologies, J.-R. Vlimant 6

Scene Labeling

Karpathy, Fei-Fei, CVPR 2015

● Create a description of images

➢ Generate a decay process description from collision
representation, with application to triggers
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Scenery Interpretation

Farabet et al. ICML 2012, PAMI 2013

● Group and classify what each pixel belongs to
● Real-time video processing with deep learning

➢ Multiple applications to pileup mitigation, object
identification, tracking. All from “raw data”
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Attention Learning

● Identify people from faces with multiple attention
filters

➢ Object identification, noise subtraction, ...
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Text Processing

● Question and Answer machine, language
translation, semantic arithmetic, ...

➢ Can the raw data of detector be interpreted as
texts and translated into physics descriptions ?
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Embedded Symmetries

T.S. Cohen, M. Welling ICML2016

p4m group

p4 group

● Introduction of convolutional
layers was a ground-breaking 
advancement

● Research on embedding more
fundamental symmetries into
neural nets

● Symmetries operate on the
data or internal
representation of data

● Next is to implement
symmetries of physics to build
physics-specific NN
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Toolkit and Services

● Lots of libraries out there, several key components in each major
languages. Lots of big-data analytics services offered

● Common theme of going for spark-hdfs support
➢ Question of having in-house software or embracing external

libraries is very much alive



10/09/16 CPAD 2016, Brain Inspired Technologies, J.-R. Vlimant 12

Partners in Industry
(among others, alphab. ordered)
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IBM

https://indico.cern.ch/event/566167/ 

IBM Bluemix Data Analytics Platform 

● Would participate with providing cognitive computing
● IBM Bluemix opened to development projects
● Enthusiast to work on data quality monitoring and

predictivity

https://indico.cern.ch/event/566167/
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Microsoft

● Azure platform for big-data analytics
● CNTK Deep Learning Platform
● Looking forward to collaborating

Microsoft Azure Services Platform

https://indico.cern.ch/event/514434/ 

https://indico.cern.ch/event/514434/
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NVidia

TESLA P100

● Major player in GP-
GPU Industry

● Supporting drivers
and major toolkits

● Actively supporting
efforts in adopting
deep learning

https://indico.cern.ch/event/514434/ 

https://indico.cern.ch/event/514434/
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Siemens

● 20 years of experience in machine learning
● Relevant application of re-inforcement learning for wind

turbine and machine learning for steel mill optimization
● “looking forward to continuing the fruitful collaboration

with Industrial Control Systems team”

https://indico.cern.ch/event/514434/ 

https://indico.cern.ch/event/514434/
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Yandex

● Active Member of the LHCb Collaboration
● Participated and Organized Outreach in HEP
● “Everware” reproducible research precursor
to Swan https://indico.cern.ch/event/514434/ 

https://indico.cern.ch/event/514434/


10/09/16 CPAD 2016, Brain Inspired Technologies, J.-R. Vlimant 18

Application to Intensity and
Energy Frontiers

(a selected few) 
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3D Calorimetry Imaging

100GeV Photon 100GeV Pi0

≠
LCD Calorimeter configuration
http://lcd.web.cern.ch
5x5 mm Pixel calorimeter
28 layer deep for Ecal
70 layer deep for Hcal

Photon and pion particle gun
Classification, regression and
combined models

http://lcd.web.cern.ch/
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Collision Event Classification

● Full event classification using particle 4-vectors
● Recurrent neural nets, Long short term memory cells
● Dedicated layer with Lorentz boosting
● Step toward event classification with lower level data :

low level feature as opposed to analysis level variables
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Charged Particle Tracking

● Perfect example of pattern recognition
● Data sparsity is not common in image processing
● Several angles to tackle the problem. Deep Kalman filter,

RNN to learn dynamics, sparse image processing, ...
● Kaggle challenge in preparation

https://indico.hep.caltech.edu/indico/event/102 

https://indico.hep.caltech.edu/indico/event/102
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NOVA Event Classification 

Slides on Paolo

Pick something extra from the slides at IBM ?
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LarTPC Reconstruction
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Particle Jet Identification

Neural
 net

Train

W to QCD
discrimination

W tagger arXiv: 1511.05190, Oliveira, Kagan, Mackey, Nachman, Schwartzman

Top Tagger arXiv: 1501.05968 Almeida, Backovic, Cliche, Lee, Perelstein

W to QCD
discrimination
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Outlier Identification

● Train a NADE (arXiv:1306.0186) model on mixture of the known backgrounds
● Use a synthetic dataset with small injected signal
● Log density singles out the injected signal
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Anomaly Learning
● Not 100% of the data taken at the experiements are good for

analysis (detector effect, calibration, software defect, …)
● Luminosity block ≡ 23s of beam
● Histograms made per luminosity block are scrutinized by experts to

decide on good/bad data
● Several layers of scrutiny, labor intensive 
● The machine learning approach 

➢ Identifies relevant features
➢ Calculates percentile per

lumiblock
➢ Trains rolling classifiers

● Accepting 1% data loss we
could  save 40% of the
workload on the certification
team

Average labor fraction
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Cryogenic Anomaly Detection

https://indico.cern.ch/event/514434/ 

● Project from the LHC cryogenic team

https://indico.cern.ch/event/514434/
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CMS Magnet Text Book Case

● Can defect be detected earlier from sensor data
● Dataset to be shared for collaborative effort
● Technology transfer to monitoring other systems
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Accelerating and Emerging
Technologies

(but not restricted to)
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GP-GPU

● GPUs are the workhorse for
parallel computing

● Enable training large models, with
large dataset

● Deep learning facility clusters

● Emergence of small GPU
● Not dedicated to training
● Strike the balance between

Tflops/$ for inference
● Deployment on the grid

M40
 7 TFlOps
 250W

M4
 2.2 TFlOps
 50W
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Distributed Learning

● Deep learning with elastic averaging SGD
https://arxiv.org/abs/1412.6651 

● Revisiting Distributed Synchronous SGD
https://arxiv.org/abs/1604.00981 

● Implementation with Spark and MPI for the
Keras framework https://keras.io/ 

Titan X

GTX 1080

https://arxiv.org/abs/1412.6651
https://arxiv.org/abs/1604.00981
https://keras.io/
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Neuromorphic Hardware

http://www.nature.com/articles/srep14730 

● Implementing plasticity in hardware 
● Process signal from detector and adapt to
categories of pattern (unsupervised)

● Post-classified from data analysis or rate throttling
➢ NCCR consortium assembling to develop this
technology further, with our use case in mind 

http://www.nature.com/articles/srep14730
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Cognitive Computing

● Spiking neural net as processing units : 
➔Cognitive Computing Processing Unit : CCPU

● Adopt a new programming scheme, translate
existing software

● See Rebecca Carney's talk for more details
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Summary

Impressive achievement and promise of
modern machine learning and deep learning

From realistic to speculative applicability to
field of High Energy and Frontier Physics

Emerging tools and technology to embrace

Partners in industry will to take up on our
challenges
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